Monochromatic and Zero-Sum Sets of Nondecreasing Modified Diameter
نویسندگان
چکیده
Let m be a positive integer whose smallest prime divisor is denoted by p, and let Zm denote the cyclic group of residues modulo m. For a set B = {x1, x2, . . . , xm} of m integers satisfying x1 < x2 < · · · < xm, and an integer j satisfying 2 ≤ j ≤ m, define gj(B) = xj − x1. Furthermore, define fj(m, 2) (define fj(m, Zm)) to be the least integer N such that for every coloring ∆ : {1, . . . ,N} → {0, 1} (every coloring ∆ : {1, . . . ,N} → Zm), there exist two m-sets B1, B2 ⊂ {1, . . . ,N} satisfying: (i) max(B1) < min(B2), (ii) gj(B1) ≤ gj(B2), and (iii) |∆(Bi)| = 1 for i = 1, 2 (and (iii) ∑ x∈Bi ∆(x) = 0 for i = 1, 2). We prove that fj(m, 2) ≤ 5m − 3 for all j, with equality holding for j = m, and that fj(m, Zm) ≤ 8m + mp − 6. Moreover, we show that fj(m, 2) ≥ 4m − 2 + (j − 1)k, where k = ⌊( −1 + √ 8m−9+j j−1 ) /2 ⌋ , and, if m is prime or j ≥ mp + p − 1, that fj(m, Zm) ≤ 6m − 4. We conclude by showing fm−1(m, 2) = fm−1(m, Zm) for m ≥ 9.
منابع مشابه
Monochromatic and zero-sum sets of nondecreasing diameter
For positive integers m and r define f (m, r) to be the minimum integer n such that for every coloring of {1,2 . . . . . n} with r colors, there exist two monochromatic subsets B 1, B2~{1, 2 . . . . . n} (but not necessarily of the same color) which satisfy: (i)IBll=lB21=m; (ii) The largest number in B 1 is smaller than the smallest number in B2; (iii) The diameter of the convex hull spanned by...
متن کاملSumsets , Zero - Sums and Extremal Combinatorics
This thesis develops and applies a method of tackling zero-sum additive questions—especially those related to the Erdős-Ginzburg-Ziv Theorem (EGZ)—through the use of partitioning sequences into sets, i.e., set partitions. Much of the research can alternatively be found in the literature spread across nine separate articles, but is here collected into one cohesive work augmented by additional ex...
متن کاملOn four color monochromatic sets with nondecreasing diameter
Let m and r be positive integers. Define f(m, r) to be the least positive integer N such that for every coloring of the integers 1, . . . , N with r colors there exist monochromatic subsets B1 and B2 (not necessarily of the same color), each having m elements, such that (a) max(B1)−min(B1) ≤ max(B2)−min(B2), and (b) max(B1) < min(B2). We improve previous upper bounds to determine that f(m, 4) =...
متن کاملOn three sets with nondecreasing diameter
Let [a, b] denote the integers between a and b inclusive and, for a finite subset X ⊆ Z, let diam (X) = max(X) − min(X). We write X <p Y provided max(X) < min(Y ). For a positive integer m, let f(m,m,m; 2) be the least integer N such that any 2-coloring ∆ : [1, N ] → {0, 1} has three monochromatic m-sets B1, B2, B3 ⊆ [1, N ] (not necessarily of the same color) with B1 <p B2 <p B3 and diam (B1) ...
متن کاملSome Observations on Subset Sum Representations
Moulton and Develin have investigated the notion of representing various sets S of positive integers, of size m say, as subset sums of smaller sets. The rank of a given set S is the smallest positive integer rk(S) ≤ m such that S is represented by an integer set of size rk(S). In this note, we primarily consider sets of the form {1, 2, 3, . . .} for positive integer m ≥ 2. Given a positive inte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electr. J. Comb.
دوره 13 شماره
صفحات -
تاریخ انتشار 2006